Wednesday, October 26, 2011

Pacific climate phases occasionally "lock" into phase

Like waves on an ocean, different climate cycles will occasionally synchronize—but two Pacific cycles not only briefly synchronize but then “lock” into phase.

This locking synchronization was described in the September issue of Physical Review Letters by Karl Stein, a University of Hawai`i at Mānoa PhD student, and Axel Timmermann and Niklas Schneider, professors at the UH Mānoa International Pacific Research Center and the Department of Oceanography.

Two of the known cycles in the equatorial Pacific are the seasonal variation in temperatures and the El Niño-Southern Oscillation, which operates on a cycle ranging from 2 to 7 years in length.

The scientists identified patterns in which these difference cycles occasionally fall into synchronization and seem to lock there for a period of time, while at other times, they simply cross paths and fail to synchronize.

It suggests that in Niño and in the tropical Eastern Pacific annual cycle, there is some feedback going on, such that once they coincide, they somehow remain in synch for a period of time, rather than continuing on their own cycles.

The next question is why that happens and what it means.

“The newly discovered sporadic phase-locking behavior of El Niño and the annual cycle will have significant impacts on current understanding of the seasonal predictability of large El Niño events. The scientists are eager to test how well state-of-the art climate models reproduce the nonlinear interaction between these two dominant modes of climate variability,” the authors said in a press release.

They said this kind of phase locking was first described in 1673 by the Dutch scientist Christiaan Huygens. It is the kind of thing that infrequently happens, for example, when an applauding audience suddenly starts to clap in unison and continues doing so for a period of time.

Citation: Karl Stein, Axel Timmermann, and Niklas Schneider, 2011: Phase Synchronization of the El Niño-Southern Oscillation with the Annual Cycle, Phys. Rev. Lett., 107, issue 12.

The research was supported by the Office of Science (BER) of the U.S. Department of Energy, and by NASA, NOAA, and the Japan Agency for Marine-Earth Science and Technology which sponsor research at the International Pacific Research Center.

© Jan TenBruggencate 2011

Saturday, October 15, 2011

Russian ship finds UHawai`i-projected tsunami debris field

It’s cool when your computer-based model runs into real world testing, and ends up right.

And a new University of Hawai`i program tracking the debris from this year’s Japan tsunami has experienced that kind of cool.

(Image: The Russian sail training ship STS Pallada. Credit: Pallada.)

At the University of Hawai‘i at Mānoa’s International Pacific Research Center, senior researcher Nikolai Maximenko and scientific computer programmer Jan Hafner have been using computers to track the likely route of the massive pulse of debris from the March 11 tsunami, as it travels on the morth Pacific currents.

They sent the results of their computer modeling to the Russian sail training ship Pallada, which was crossing from Honolulu to Vladivostok. The sailors kept an eye out, and sure enough, when they sailed a distance past Midway, heading northwest, they came across a complex field of tsunami-caused debris.

Pallada information and education mate Natalia Borodina reported on Sept. 27 that stuff that matches what they would have expected to find. They tested for radiation from the damaged Japanese nuclear plant, but did not identify raised levels of radiation.

“We keep sighting everyday things like wooden boards, plastic bottles, buoys from fishing nets (small and big ones), an object resembling wash basin, drums, boots, other wastes. All these objects are floating by the ship,” she emailed.

They even came across a Japanese fishing boat, a 20-footer whose wheelhouse bears inscriptions indicating it came from Fukushima Prefecture, which suffered severe damage from the tsunami. The boat was brought on board the Pallada.

(Image: Adrift Japanese fishing boat hoisted aboard STS Pallada. Credit: Pallada)

The debris was within the debris field predicted by the models of Maximenko and Hafner.

The researchers project that the debris may hit Midway and other parts of the Northwestern Hawaiian Islands this winter, and could reach the main Hawaiian Islands later.

© Jan TenBruggencate 2011

Two major new climate research efforts at UHawai`i

Hawai’i is increasingly active in the science of the Pacific, with island-based researchers contributing to global research efforts.

Two new federally funded research efforts have just landed in Hawai`i.

Recently, the University of Hawai`i announced that NOAA has committed up to $95 million for a five-year program to study coastal and marine resources in connection with changes to the environment.

It will run through UH’s Joint Institute for Marine and Atmospheric Research (JIMAR), to be headed by oceanographer Mark Merrifield. It will be one of 18 such cooperative institutes across the country.

Among the specific projects: “assessment of local fish stocks, monitoring and ecosystem-based management policies for coral reef ecosystems including the Northwestern Hawaiian Islands, development of remediation strategies for endangered Monk Seal populations, monitoring of global sea level rise and local sea level impacts, modeling of volcanic smoke and haze (VOG), improved forecasts of hurricane intensities, projections of ENSO variability and impacts on Pacific island states, and provision of water level observations for tsunami warning.”

Meanwhile, the Interior Department announced that it will fund the development at UH of the Pacific Islands Climate Science Center, one ofseveral such climate centers across the U.S. This one will be a joint project of University of Hawai'i at Mānoa, the University of Hawai'i at Hilo, and the University of Guam.

Again, its goal will be to help our nation cope with climate change and “other landscape-style stressors impacting the nation’s natural and cultural resources.”

“The new climate center will serve as a resource for federal agencies and other stakeholders in providing the necessary science input into policy decisions. It will also support research and graduate student training on a variety of environmental concerns with a primary scientific focus on understanding the effects of climate change and variability on island ecosystems,” said Kevin Hamilton, the director of the UH’s International Pacific Research Center, who iwill head the new Pacific Islands Climate Center.

The university expects initial funding to be in the neighborhood of $3 million over 5 years, and anticipates the Department of Interior will station several federal scientists in Hawai`i to work with the project.

© Jan TenBruggencate 2011